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Abstract

Accurately annotating large scale dataset is notoriously expensive both in time
and in money. Although acquiring low-quality-annotated dataset can be much
cheaper, it often badly damages the performance of trained models when using
such dataset without particular treatment. Various methods have been proposed for
learning with noisy labels. However, most methods only handle limited kinds of
noise patterns, require auxiliary information or steps (e.g., knowing or estimating
the noise transition matrix), or lack theoretical justification. In this paper, we
propose a novel information-theoretic loss function, LDMI, for training deep neural
networks robust to label noise. The core of LDMI is a generalized version of
mutual information, termed Determinant based Mutual Information (DMI), which
is not only information-monotone but also relatively invariant. To the best of
our knowledge, LDMI is the first loss function that is provably robust to instance-
independent label noise, regardless of noise pattern, and it can be applied to any
existing classification neural networks straightforwardly without any auxiliary
information. In addition to theoretical justification, we also empirically show that
using LDMI outperforms all other counterparts in the classification task on both
image dataset and natural language dataset include Fashion-MNIST, CIFAR-10,
Dogs vs. Cats, MR with a variety of synthesized noise patterns and noise amounts,
as well as a real-world dataset Clothing1M.

1 Introduction

Deep neural networks, together with large scale accurately annotated datasets, have achieved remark-
able performance in a great many classification tasks in recent years (e.g., [18, 11]). However, it is
usually money- and time- consuming to find experts to annotate labels for large scale datasets. While
collecting labels from crowdsourcing platforms like Amazon Mechanical Turk is a potential way
to get annotations cheaper and faster, the collected labels are usually very noisy. The noisy labels
hampers the performance of deep neural networks since the commonly used cross entropy loss is not
noise-robust. This raises an urgent demand on designing noise-robust loss functions.

Some previous works have proposed several loss functions for training deep neural networks with
noisy labels. However, they either use auxiliary information[29, 12](e.g., having an additional set of
clean data or the noise transition matrix) or steps[20, 33](e.g. estimating the noise transition matrix),
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or make assumptions on the noise [7, 48] and thus can only handle limited kinds of the noise patterns
(see perliminaries for definition of different noise patterns).

One reason that the loss functions used in previous works are not robust to a certain noise pattern, say
diagonally non-dominant noise, is that they are distance-based, i.e., the loss is the distance between
the classifier’s outputs and the labels (e.g. 0-1 loss, cross entropy loss). When datapoints are labeled
by a careless annotator who tends to label the a priori popular class (e.g. For medical images, given
the prior knowledge is 10% malignant and 90% benign, a careless annotator labels “benign” when
the underline true label is “benign” and labels “benign” with 90% probability when the underline
true label is “malignant”.), the collected noisy labels have a diagonally non-dominant noise pattern
and are extremely biased to one class (“benign”). In this situation, the distanced-based losses will
prefer the “meaningless classifier" who always outputs the a priori popular class (“benign”) than the
classifier who outputs the true labels.

To address this issue, instead of using distance-based losses, we propose to employ information-
theoretic loss such that the classifier, whose outputs have the highest mutual information with the
labels, has the lowest loss. The key observation is that the “meaningless classifier" has no information
about anything and will be naturally eliminated by the information-theoretic loss. Moreover, the
information-monotonicity of the mutual information guarantees that adding noises to a classifier’s
output will make this classifier less preferred by the information-theoretic loss.

However, the key observation is not sufficient. In fact, we want an information measure I to satisfy

I(classifier 1’s output; noisy labels) > I(classifier 2’s output; noisy labels)
⇔I(classifier 1’s output; clean labels) > I(classifier 2’s output; clean labels).

Unfortunately, the traditional Shannon mutual information (MI) does not satisfy the above formula,
while we find that a generalized information measure, namely, DMI (Determinant based Mutual
Information), satisfies the above formula. Like MI, DMI measures the correlation between two
random variables. It is defined as the determinant of the matrix that describes the joint distribution
over the two variables. Intuitively, when two random variables are independent, their joint distribution
matrix has low rank and zero determinant. Moreover, DMI is not only information-monotone like MI,
but also relatively invariant because of the multiplication property of the determinant. The relative
invariance of DMI makes it satisfy the above formula.

Based on DMI, we propose a noise-robust loss function LDMI which is simply

LDMI(data; classifier) ∶= − log[DMI(classifier’s output; labels)].

As shown in theorem 4.1 later, with LDMI, the following equation holds:

LDMI(noisy data; classifier) = LDMI(clean data; classifier) + noise amount,

and the noise amount is a constant given the dataset. The equation reveals that with LDMI, training
with the noisy labels is theoretically equivalent with training with the clean labels in the dataset,
regardless of the noise patterns, including the noise amounts.

In summary, we propose a novel information theoretic noise-robust loss function LDMI based on
a generalized information measure, DMI. Theoretically we show that LDMI is robust to instance-
independent label noise. As an additional benefit, it can be easily applied to any existing classification
neural networks straightforwardly without any auxiliary information. Extensive experiments have
been done on both image dataset and natural language dataset including Fashion-MNIST, CIFAR-10,
Dogs vs. Cats, MR with a variety of synthesized noise patterns and noise amounts as well as a
real-world dataset Clothing1M. The results demonstrate the superior performance of LDMI.

2 Related Work

A series of works have attempted to design noise-robust loss functions. In the context of binary
classification, some loss functions (e.g., 0-1 loss[22], ramp loss[3], unhinged loss[40], savage loss[23])
have been proved to be robust to uniform or symmetric noise and Natarajan et al. [26] presented a
general way to modify any given surrogate loss function. Ghosh et al. [7] generalized the existing
results for binary classification problem to multi-class classification problem and proved that MAE
(Mean Absolute Error) is robust to diagonally dominant noise. Zhang et al. [48] showed MAE
performs poorly with deep neural network and they combined MAE and cross entropy loss to obtain
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a new loss function. Patrini et al. [29] provided two kinds of loss correction methods with knowing
the noise transition matrix. The noise transition matrix sometimes can be estimated from the noisy
data [33, 20, 30]. Hendrycks et al. [12] proposed another loss correction technique with an additional
set of clean data. To the best of our knowledge, we are the first to provide a loss function that is
provably robust to instance-independent label noise without knowing the transition matrix, regardless
of noise pattern and noise amount.

Instead of designing an inherently noise-robust function, several works used special architectures
to deal with the problem of training deep neural networks with noisy labels. Some of them focused
on estimating the noise transition matrix to handle the label noise and proposed a variety of ways to
constrain the optimization [37, 43, 8, 39, 9, 44]. Some of them focused on finding ways to distinguish
noisy labels from clean labels and used example re-weighting strategies to give the noisy labels less
weights [31, 32, 21]. While these methods seem to perform well in practice, they cannot guarantee
the robustness to label noise theoretically and are also outperformed by our method empirically.

On the other hand, Zhang et al. [46] have shown that deep neural networks can easily memorize
completely random labels, thus several works propose frameworks to prevent this overfitting issue
empirically in the setting of deep learning from noisy labels. For example, teacher-student curriculum
learning framework [14] and co-teaching framework [10] have been shown to be helpful. Multi-
task frameworks that jointly estimates true labels and learns to classify images are also introduced
[41, 19, 38, 45]. Explicit and implicit regularization methods can also be applied [47, 25]. We consider
a different perspective from them and focus on designing an inherently noise-robust function.

In this paper, we only consider instance-independent noise. There are also some works that investigate
instance-dependent noise model (e.g. [5, 24]). They focus on the binary setting and assume that the
noisy and true labels agree on average.

3 Preliminaries

3.1 Problem settings

We denote the set of classes by C and the size of C by C. We also denote the domain of datapoints by
X . A classifier is denoted by h ∶ X ↦∆C , where ∆C is the set of all possible distributions over C. h
represents a randomized classifier such that given x ∈ X , h(x)c is the probability that h maps x into
class c. Note that fixing the input x, the randomness of a classifier is independent of everything else.

There are N datapoints {xi}Ni=1. For each datapoint xi, there is an unknown ground truth yi ∈ C. We
assume that there is an unknown prior distribution QX,Y over X × C such that {(xi, yi)}Ni=1 are i.i.d.
samples drawn from QX,Y and

QX,Y (x, y) = Pr[X = x,Y = y].

Note that here we allow the datapoints to be “imperfect” instances, i.e., there still exists uncertainty
for Y conditioning on fully knowing X .

Traditional supervised learning aims to train a classifier h∗ that is able to classify new datapoints into
their ground truth categories with access to {(xi, yi)}Ni=1. However, in the setting of learning with
noisy labels, instead, we only have access to {(xi, ỹi)}Ni=1 where ỹi is a noisy version of yi.

We use a random variable Ỹ to denote the noisy version of Y and TY→Ỹ to denote the transition
distribution between Y and , i.e.

TY→Ỹ (y, ỹ) = Pr[Ỹ = ỹ∣Y = y].

We use TY→Ỹ to represent the C ×C matrix format of TY→Ỹ .

Generally speaking [29, 7, 48], label noise can be divided into several kinds according to the noise
transition matrix TY→Ỹ . It is defined as class-independent (or uniform) if a label is substituted by a
uniformly random label regardless of the classes, i.e. Pr[Ỹ = c̃∣Y = c] = Pr[Ỹ = c̃′∣Y = c],∀c̃, c̃′ ≠ c
(e.g. TY→Ỹ = [0.7 0.3

0.3 0.7]). It is defined as diagonally dominant if for every row of TY→Ỹ , the

magnitude of the diagonal entry is larger than any non-diagonal entry, i.e. Pr[Ỹ = c∣Y = c] > Pr[Ỹ =
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c̃∣Y = c],∀c̃ ≠ c (e.g. TY→Ỹ = [0.7 0.3
0.2 0.8]). It is defined as diagonally non-dominant if it is not

diagonally dominant (e.g. the example mentioned in introduction, TY→Ỹ = [ 1 0
0.9 0.1]).

We assume that the noise is independent of the datapoints conditioning on the ground truth, which is
commonly assumed in the literature [29, 7, 48], i.e.,
Assumption 3.1 (Independent noise). X is independent of Ỹ conditioning on Y .

We also need that the noisy version Ỹ is still informative.
Assumption 3.2 (Informative noisy label). TY→Ỹ is invertible, i.e., det(TY→Ỹ ) ≠ 0.

3.2 Information theory concepts

Since Shannon’s seminal work [35], information theory has shown its powerful impact in various
of fields, including several recent deep learning works [13, 4, 17]. Our work is also inspired by
information theory. This section introduces several basic information theory concepts.

Information theory is commonly related to random variables. For every random variable W1, Shan-
non’s entropy H(W1) ∶= ∑w1

Pr[W = w1] log Pr[W = w1] measures the uncertainty of W1. For
example, deterministic W1 has lowest entropy. For every two random variables W1 and W2, Shannon
mutual information MI(W1,W2) ∶= ∑w1,w2

Pr[W1 = w1,W2 = w2] log Pr[W=w1,W=w2]
Pr[W1=w1]Pr[W2=w2] mea-

sures the amount of relevance between W1 and W2. For example, when W1 and W2 are independent,
they have the lowest Shannon mutual information, zero.

Shannon mutual information is non-negative, symmetric, i.e., MI(W1,W2) = MI(W2,W1), and also
satisfies a desired property, information-monotonicity, i.e., the mutual information between W1 and
W2 will always decrease if either W1 or W2 has been “processed”.
Fact 3.3 (Information-monotonicity [6]). For all random variables W1,W2,W3, when W3 is less
informative for W2 than W1, i.e., W3 is independent of W2 conditioning W1,

MI(W3,W2) ≤ MI(W1,W2).

This property naturally induces that for all random variables W1,W2,
MI(W1,W2) ≤ MI(W2,W2) = H(W2)

since W2 is always the most informative random variable for itself.

Based on Shannon mutual information, a performance measure for a classifier h can be naturally
defined. High quality classifier’s output h(X) should have high mutual information with the ground
truth category Y . Thus, a classifier h’s performance can be measured by MI(h(X), Y ).

However, in our setting, we only have access to the i.i.d. samples of h(X) and Ỹ . A natural attempt
is to measure a classifier h’s performance by MI(h(X), Ỹ ). Unfortunately, under this performance
measure, the measurement based on noisy labels MI(h(X), Ỹ ) may not be consistent with the
measurement based on true labels MI(h(X), Y ). (See a counterexample in Supplementary Material
B.) That is,

∀h,h′,MI(h(X), Y ) > MI(h′(X), Y )⇔/ MI(h(X), Ỹ ) > MI(h′(X), Ỹ ).
Thus, we cannot use Shannon mutual information as the performance measure for classifiers. Here
we find that, a generalized mutual information, Determinant based Mutual Information (DMI) [16],
satisfies the above formula such that under the performance measure based on DMI, the measurement
based on noisy labels is consistent with the measurement based on true labels.
Definition 3.4 (Determinant based Mutual Information [16]). Given two discrete random variables
W1,W2, we define the Determinant based Mutual Information between W1 and W2 as

DMI(W1,W2) = ∣det(QW1,W2)∣
where QW1,W2 is the matrix format of the joint distribution over W1 and W2.

DMI is a generalized version of Shannon’s mutual information: it preserves all properties of Shannon
mutual information, including non-negativity, symmetry and information-monotonicity and it is
additionally relatively invariant. DMI is initially proposed to address a mechanism design problem
[16].
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Lemma 3.5 (Properties of DMI [16]). DMI is non-negative, symmetric and information-monotone.
Moreover, it is relatively invariant: for all random variablesW1,W2,W3, whenW3 is less informative
for W2 than W1, i.e., W3 is independent of W2 conditioning W1,

DMI(W2,W3) = DMI(W2,W1)∣det(TW1→W3)∣
where TW1→W3 is the matrix format of

TW1→W3(w1,w3) = Pr[W3 = w3∣W1 = w1].

Proof. The non-negativity and symmetry follow directly from the definition, so we only need to
prove the relatively invariance. Note that

Pr
QW2,W3

[W2 = w2, ,W3 = w3] =∑
w1

Pr
QW1,W2

[W2 = w2,W1 = w1]Pr[W3 = w3∣W1 = w1].

as W3 is independent of W2 conditioning on W1. Thus,

QW2,W3 =QW2,W1TW1→W3

where QW2,W3 , QW2,W1 , TW1→W3 are the matrix formats of QW2,W3 , QW2,W1 , TW1→W3 , respec-
tively. We have

det(QW2,W3) = det(QW2,W1)det(TW1→W3)
because of the multiplication property of the determinant (i.e. det(AB) = det(A)det(B) for every
two matrices A,B). Therefore, DMI(W2,W3) = DMI(W2,W1)∣det(TW1→W3)∣.
The relative invariance and the symmetry imply the information-monotonicity of DMI. When W3 is
less informative for W2 than W1, i.e., W3 is independent of W2 conditioning on W1,

DMI(W3,W2) = DMI(W2,W3) = DMI(W2,W1)∣det(TW1→W3)∣
≤ DMI(W2,W1) = DMI(W1,W2)

because of the fact that for every square transition matrix T, det(T) ≤ 1 [34].

Based on DMI, an information-theoretic performance measure for each classifier h is naturally
defined as DMI(h(X), Ỹ ). Under this performance measure, the measurement based on noisy labels
DMI(h(X), Ỹ ) is consistent with the measurement based on clean labels DMI(h(X), Y ), i.e., for
every two classifiers h and h′,

DMI(h(X), Y ) > DMI(h′(X), Y )⇔ DMI(h(X), Ỹ ) > DMI(h′(X), Ỹ ).

4 LDMI: An Information-theoretic Noise-robust Loss Function

4.1 Method overview

Our loss function is defined as

LDMI(Qh(X),Ỹ ) ∶= − log(DMI(h(X), Ỹ )) = − log(∣det(Qh(X),Ỹ )∣)

where Qh(X),Ỹ is the joint distribution over h(X), Ỹ and Qh(X),Ỹ is the C ×C matrix format of
Qh(X),Ỹ . The randomness h(X) comes from both the randomness of h and the randomness of X .
The log function here resolves many scaling issues2.

Figure 1 shows the computation of LDMI. In each step of iteration, we sample a batch of datapoints
and their noisy labels {(xi, ỹi)}Ni=1. We denote the outputs of the classifier by a matrix O. Each
column of O is a distribution over C, representing for an output of the classifier. We denote the noisy
labels by a 0-1 matrix L. Each row of L is an one-hot vector, representing for a label. i.e.

Oci = h(xi)c, Lic̃ = 1[ỹi = c̃],

We define U ∶= 1
N
OL, i.e.,

2 ∂(c∣det(A)∣)
∂A

= c∣det(A)∣(A−1
)
T while ∂ log(c∣det(A)∣)

∂A
= (A−1

)
T , ∀ matrix A and ∀ constant c.
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Figure 1: The computation of LDMI in each step of iteration

Ucc̃ ∶=
1

N

N

∑
i=1

OciLic̃ =
1

N

N

∑
i=1

h(xi)c1[ỹi = c̃].

We have EUcc̃ = Pr[h(X) = c, Ỹ = c̃] = Qh(X),Ỹ (c, c̃) (E means expectation, see proof in
Supplementary Material B). Thus, U is an empirical estimation of Qh(X),Ỹ . By abusing notation a
little bit, we define

LDMI({(xi, ỹi)}Ni=1;h) = − log(∣det(U)∣)
as the empirical loss function. Our formal training process is shown in Supplementary Material A.

4.2 Theoretical justification

Theorem 4.1 (Main Theorem). With Assumption 3.1 and Assumption 3.2, LDMI is

legal if there exists a ground truth classifier h∗ such that h∗(X) = Y , then it must have the lowest
loss, i.e., for all classifier h,

LDMI(Qh∗(X),Ỹ ) ≤ LDMI(Qh(X),Ỹ )

and the inequality is strict when h(X) is not a permutation of h∗(X), i.e., there does not
exist a permutation π ∶ C ↦ C s.t. h(x) = π(h∗(x)),∀x ∈ X ;

noise-robust for the set of all possible classifiersH,

arg min
h∈H

LDMI(Qh(X),Ỹ ) = arg min
h∈H

LDMI(Qh(X),Y )

and in fact, training using noisy labels is the same as training using clean labels in the
dataset except a constant shift,

LDMI(Qh(X),Ỹ ) = LDMI(Qh(X),Y ) + α;

information-monotone for every two classifiers h,h′, if h′(X) is less informative for Y than h(X),
i.e. h′(X) is independent of Y conditioning on h(X), then

LDMI(Qh′(X),Ỹ ) ≤ LDMI(Qh(X),Ỹ ).

Proof. The relatively invariance of DMI (Lemma 3.5) implies

DMI(h(X), Ỹ ) = DMI(h(X), Y )∣det(TY→Ỹ )∣.
Therefore,

LDMI(Qh(X),Ỹ ) = LDMI(Qh(X),Y ) + log(∣det(TY→Ỹ )∣).
Thus, the information-monotonicity and the noise-robustness of LDMI follows and the constant
α = log(∣det(TY→Ỹ )∣) ≤ 0.

The legal property follows from the information-monotonicity of LDMI as h∗(X) = Y is the most
informative random variable for Y itself and the fact that for every square transition matrix T ,
det(T ) = 1 if and only if T is a permutation matrix [34].
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5 Experiments

We evaluate our method on both synthesized and real-world noisy datasets with different deep neural
networks to demonstrate that our method is independent of both architecture and data domain. We
call our method DMI and compare it with: CE (the cross entropy loss), FW (the forward loss
[29]), GCE (the generalized cross entropy loss [48]), LCCN (the latent class-conditional noise
model [44]). For the synthesized data, noises are added to the training and validation sets, and
test accuracy is computed with respect to true labels. For our method, we pick the best learning
rate from {1.0 × 10−4,1.0 × 10−5,1.0 × 10−6} and the best batch size from {128,256} based on the
minimum validation loss. For other methods, we use the best hyperparameters they provided in
similar settings. The classifiers are pretrained with cross entropy loss first. All reported experiments
were repeated five times. We implement all networks and training procedures in Pytorch [28] and
conduct all experiments on NVIDIA TITAN Xp GPUs.3 The explicit noise transition matrices are
shown in Supplementary Material C. Due to space limit, we defer some additional experiments to
Supplementary Material D.

5.1 An explanation experiment on Fashion-MNIST

To compare distance-based and information-theoretic loss functions as we mentioned in the third
paragraph in introduction, we conducted experiments on Fashion-MNIST [42]. It consists of 70,000
28 × 28 grayscale fashion product image from 10 classes, which is split into a 50,000-image training
set, a 10,000-image valiadation set and a 10,000-image test set. For clean presentation, we only
compare our information-theoretic loss function DMI with the distance-based loss function CE here
and convert the labels in the dataset to two classes, bags and clothes, to synthesize a highly imbalanced
dataset (10% bags, 90% clothes). We use a simple two-layer convolutional neural network as the
classifier. Adam with default parameters and a learning rate of 1.0 × 10−4 is used as the optimizer
during training. Batch size is set to 128.

We synthesize three cases of noise patterns: (1) with probability r, a true label is substituted by a
random label through uniform sampling. (2) with probability r, bags→ clothes, that is, a true label of
the a priori less popular class, “bags”, is flipped to the popular one, “clothes”. This happens in real
world when the annotators are lazy. (e.g., a careless medical image annotator may be more likely
to label “benign” since most images are in the “benign” category.) (3) with probability r, clothes
→ bags, that is, the a priori more popular class, “clothes”, is flipped to the other one, “bags”. This
happens in real world when the annotators are risk-avoid and there will be smaller adverse effects if
the annotators label the image to a certain class. (e.g. a risk-avoid medical image annotator may be
more likely to label “malignant” since it is usually safer when the annotator is not confident, even if it
is less likely a priori.) Note that the parameter 0 ≤ r ≤ 1 in the above three cases also represents the
amount of noise. When r = 0, the labels are clean and when r = 1, the labels are totally uninformative.
Moreover, in case (2) and (3), as r increases, the noise pattern changes from diagonally dominant to
diagonally non-dominant.

Figure 2: Test accuracy (mean and std. dev.) on Fashion-MNIST.

As we mentioned in the introduction, distance-based loss functions will perform badly when the noise
is non-diagonally dominant and the labels are biased to one class since they prefer the meaningless
classifier h0 who always outputs the class who is the majority in the labels. (∀x,h0(x) = “clothes”
and has accuracy 90% in case (2) and ∀x,h0(x) = “bags” and has accuracy 10% in case (3)). The

3Source codes are available at https://github.com/Newbeeer/L_DMI.
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Figure 3: Test accuracy (mean) on CIFAR-10, Dogs vs. Cats and MR.

experiment results match our expectation. CE performs similarly with our DMI for diagonally
dominant noises. For non-diagonally dominant noises, however, CE only obtains the meaningless
classifier h0 while DMI still performs pretty well.

5.2 Experiments on CIFAR-10, Dogs vs. Cats and MR

CIFAR-10 [1] consists of 60,000 32 × 32 color images from 10 classes, which is split into a 40,000-
image training set, a 10,000-image validation set and a 10,000-image test set. Dogs vs. Cats [2]
consists of 25,000 images from 2 classes, dogs and cats, which is split into a 12,500-image training
set, a 6,250-image validation set and a 6,250-image test set. MR [27] consist of 10,662 one-sentence
movie reviews from 2 classes, positive and negative, which is split into a 7,676-sentence training
set, a 1,919-sentence validation set and a 1,067-sentence test set. We use ResNet-34[11], VGG-
16[36], WordCNN[15] as the classifier for CIFAR-10, Dogs vs. Cats, MR, respectively. SGD with
a momentum of 0.9, a weight decay of 1.0 × 10−4 and a learning rate of 1.0 × 10−5 is used as the
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optimizer during training for CIFAR-10 and Dogs vs. Cats. Adam with default parameters and a
learning rate of 1.0 × 10−4 is used as the optimizer during training for MR. Batch size is set to 128.
We use per-pixel normalization, horizontal random flip and 32 × 32 random crops after padding with
4 pixels on each side as data augmentation for images in CIFAR-10 and Dogs vs Cats. We use the
same pre-processing pipeline in [15] for sentences in MR. Following [44], the noise for CIFAR-10 is
added between the similar classes, i.e. truck→ automobile, bird→ airplane, deer→ horse, cat→ dog,
with probability r. The noise for Dogs vs. Cats is added as cat→ dog with probability r. The noise
for MR is added as positive→ negative with probability r.

As shown in Figure 3, our method DMI almost outperforms all other methods in every experiment and
its accuracy drops slowly as the noise amount increases. GCE has great performance in diagonally
dominant noises but it fails in diagonally non-dominant noises. This phenomenon matches its theory:
it assumes that the label noise is diagonally dominant. FW needs to pre-estimate a noise transition
matrix before training and LCCN uses the output of the model to estimate the true labels. These
tasks become harder as the noise amount grows larger, so their performance also drop quickly as the
noise amount increases.

5.3 Experiments on Clothing1M

Clothing1M [43] is a large-scale real world dataset, which consists of 1 million images of clothes
collected from shopping websites with noisy labels from 14 classes assigned by the surrounding text
provided by the sellers. It has additional 14k and 10k clean data respectively for validation and test.
We use ResNet-50[11] as the classifier and apply random crop of 224 × 224, random flip, brightness
and saturation as data augmentation. SGD with a momentum of 0.9, a weight decay of 1.0 × 10−3 is
used as the optimizer during training. We train the classifier with learning rates of 1.0 × 10−6 in the
first 5 epochs and 0.5 × 10−6 in the second 5 epochs. Batch size is set to 256.

Table 1: Test accuracy (mean) on Clothing1M

Method CE FW GCE LCCN DMI
Accuracy 68.94 70.83 69.09 71.63 72.46

As shown in Table 5, DMI also outperforms other methods in the real-world setting.

6 Conclusion and Discussion

We propose a simple yet powerful loss function, LDMI, for training deep neural networks robust to
label noise. It is based on a generalized version of mutual information, DMI. We provide theoretical
validation to our approach and compare our approach experimentally with previous methods on both
synthesized and real-world datasets. To the best of our knowledge, LDMI is the first loss function that
is provably robust to instance-independent label noise, regardless of noise pattern and noise amount,
and it can be applied to any existing classification neural networks straightforwardly without any
auxiliary information.

In the experiment, sometimes DMI does not have advantage when the data is clean and is outper-
formed by GCE. GCE does a training optimization on MAE with some hyperparameters while
sacrifices the robustness a little bit theoretically. A possible future direction is to employ some
training optimizations in our method to improve the performance.

The current paper focuses on the instance-independent noise setting. That is, we assume conditioning
on the latent ground truth label Y , Ỹ and X are independent. There may exist Y ′ ≠ Y such that
Ỹ and X are independent conditioning on Y ′. Based on our theorem, training using Ỹ is also
the same as training using Y ′. However, without any additional assumption, when we only has
the conditional independent assumption, no algorithm can distinguish Y ′ and Y . Moreover, the
information-monotonicity of our loss function guarantees that if Y is more informative than Y ′ with
X , the best hypothesis learned in our algorithm will be more similar with Y than Y ′. Thus, if we
assume that the actual ground truth label Y is the most informative one, then our algorithm can learn
to predict Y rather than other Y ′s. An interesting future direction is to combine our method with
additional assumptions to give a better prediction.
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A Training Process

Algorithm 1 The training process with LDMI

Require: A training dataset D = {(xi, ỹi)}Di=1, a validation dataset V = {(xi, ỹi)}Vi=1, a classifier
modeled by deep neural network hΘ, the running epoch number T , the learning rate γ and the
batch size N .

1: Pretrain the classifier hΘ on the dataset D with cross entropy loss
2: Initialize the best classifier: hΘ∗ ← hΘ

3: Randomly sample a batch of samples Bv = {(xi, ỹi)}Ni=1 from the validation dataset
4: Initialize the minimum validation loss: L∗ ← LDMI(Bv;hΘ)
5: for epoch t = 1→ T do
6: for batch b = 1→ ⌈D/B⌉ do
7: Randomly sample a batch of samples Bt = {(xi, ỹi)}Ni=1 from the training dataset
8: Compute the training loss: L← LDMI(Bt;hΘ)
9: Update Θ: Θ← Θ − γ ∂L

∂Θ
10: end for
11: Randomly sample a batch of samples Bv = {(xi, ỹi)}Ni=1 from the validation dataset
12: Compute the validation loss: L← LDMI(Bv;hΘ)
13: if L < L∗ then
14: Update the minimum validation loss: L∗ ← L
15: Update the best classifier: hΘ∗ ← hΘ

16: end if
17: end for
18: return the best classifier hΘ∗

B Other Proofs

Claim B.1.
EUcc̃ = Pr[h(X) = c, Ỹ = c̃]

where

Ucc̃ ∶=
1

N

N

∑
i=1

OciLic̃ =
1

N

N

∑
i=1

h(xi)c1[ỹi = c̃].

Proof. Recall that the randomness of h(X) comes from both h and X and the randomness of h is
independent of everything else.

EUcc̃ = E
1

N

N

∑
i=1

h(xi)c1[ỹi = c̃]

= EX,Ỹ h(X)c1[Ỹ = c̃] (i.i.d. samples)

=∑
x,ỹ

Pr[X = x, Ỹ = ỹ]h(x)c1[ỹ = c̃]

=∑
x

Pr[X = x, Ỹ = c̃]h(x)c

=∑
x

Pr[X = x, Ỹ = c̃]Pr[h(X) = c∣X = x] (definition of randomized classifier)

=∑
x

Pr[X = x, Ỹ = c̃]Pr[h(X) = c∣X = x, Ỹ = c̃]

(fixing x, the randomness of h is independent of everything else)

= Pr[h(X) = c, Ỹ = c̃].
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Claim B.2. Under the the performance measure based on Shannon mutual information, the mea-
surement based on noisy labels MI(h(X), Ỹ ) is not consistent with the measurement based on true
labels MI(h(X), Y ). i.e., for every two classifiers h and h′,

I(h(X), Y ) > I(h′(X), Y )⇔/ I(h(X), Ỹ ) > I(h′(X), Ỹ ).

Proof. See a counterexample:

The matrix format of the joint distribution Qh(X),Y is Qh(X),Y = [0.1 0.4
0.2 0.3], the matrix format

of the joint distribution Qh′(X),Y is Qh′(X),Y = [0.2 0.6
0.1 0.1] and the noise transition matrix is

TY→Ỹ = [0.8 0.2
0.4 0.6].

Given these conditions, Qh(X),Ỹ = [0.24 0.26
0.28 0.22] and Qh′(X),Ỹ = [0.40 0.40

0.12 0.08].

If we use Shannon mutual information as the performance measure,

MI(h(X), Y ) = 2.4157 × 10−2,

MI(h′(X), Y ) = 2.2367 × 10−2,

MI(h(X), Ỹ ) = 3.2085 × 10−3,

MI(h′(X), Ỹ ) = 3.2268 × 10−3.

Thus we have MI(h(X), Y ) > MI(h′(X), Y ) but MI(h(X), Ỹ ) < MI(h′(X), Ỹ ).

Therefore, MI(h(X), Y ) > MI(h′(X), Y )⇔/ MI(h(X), Ỹ ) > MI(h′(X), Ỹ ).

C Noise Transition Matrices

Here we list the explicit noise transition matrices.

On Fashion-MNIST, case (1): TY→Ỹ = [1 −
r
2

r
2r

2
1 − r

2
];

On Fashion-MNIST, case (2): TY→Ỹ = [1 − r r
0 1];

On Fashion-MNIST, case (3): TY→Ỹ = [1 0
r 1 − r];

On CIFAR-10, TY→Ỹ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
r 0 1 − r 0 0 0 0 0 0 0
0 0 0 1 − r 0 r 0 0 0 0
0 0 0 0 1 − r 0 0 r 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 r 0 0 0 0 0 0 0 1 − r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

On Dogs vs. Cats, TY→Ỹ = [1 0
r 1 − r].

On MR, TY→Ỹ = [1 0
r 1 − r].

For Fashion-MNIST case (1), r = 0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0,9 are diagonally dom-
inant noises. For other cases, r = 0.0,0.1,0.2,0.3,0.4 are diagonally dominant noises and
r = 0.5,0.6,0.7,0.8,0,9 are diagonally non-dominant noises.
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D Additional Experiments

For clean presentation, we only include the comparison between CE and DMI in section 5.1 and
attach comparisons with other methods here. In the experiments in section 5.2, noise patterns are
divided into two main cases, diagonally dominant and diagonally non-dominant and uniform noise is
a special case of diagonally dominant noise. Thus, we did not emphasize the uniform noise results in
section 5.2 and attach them here.

Figure 4: Additional experiments

We also compared our method to MentorNet (the sample reweighting loss [14]) and VAT (the
regularization loss [25]). For clean presentation, we only attach them here. Our method still
outperforms these two additional baselines in most of the cases. 4

Table 2: Test accuracy on CIFAR-10 (mean ± std. dev.)

r CE MentorNet VAT FW GCE LCCN DMI

0.0 93.29 ± 0.18 92.13 ± 1.22 92.25 ± 0.1 93.12 ± 0.16 93.43 ± 0.24 92.47 ± 0.36 93.37 ± 0.20
0.1 91.63 ± 0.32 91.35 ± 0.83 91.4 ± 0.68 91.54 ± 0.15 91.96 ± 0.09 91.88 ± 0.23 92.08 ± 0.08
0.2 90.36 ± 0.24 90.06 ± 0.52 91.19 ± 0.31 90.10 ± 0.22 90.87 ± 0.16 91.05 ± 0.43 91.51 ± 0.17
0.3 88.79 ± 0.40 88.47 ± 0.61 88.97 ± 0.41 88.77 ± 0.36 89.67 ± 0.21 89.88 ± 0.40 91.12 ± 0.30
0.4 84.76 ± 0.98 84.12 ± 1.29 84.09 ± 0.46 84.78 ± 1.53 86.6 ± 0.47 89.33 ± 0.58 90.41 ± 0.32
0.5 74.81 ± 3.37 78.43 ± 0.39 75.07 ± 0.66 77.2 ± 4.19 78.53 ± 1.93 88.30 ± 0.38 89.45 ± 0.99
0.6 64.61 ± 0.72 71.33 ± 0.13 65.02 ± 0.63 71.98 ± 1.83 71.14 ± 0.78 86.89 ± 0.51 89.03 ± 0.69
0.7 59.15 ± 0.64 66.28 ± 0.76 58.92 ± 1.49 67.59 ± 1.64 67.10 ± 0.82 77.50 ± 0.60 88.82 ± 0.89
0.8 57.65 ± 0.28 65.67 ± 0.57 57.78 ± 0.32 62.22 ± 1.80 62.56 ± 0.72 74.62 ± 1.16 87.46 ± 0.79
0.9 57.46 ± 0.08 59.49 ± 0.40 57.19 ± 1.25 58.23 ± 0.25 58.91 ± 0.46 61.32 ± 1.87 85.94 ± 0.74

4VAT can not be applied to MR dataset.
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Table 3: Test accuracy on Dogs vs. Cats (mean ± std. dev.)

r CE MentorNet VAT FW GCE LCCN DMI

0.0 88.50 ± 0.60 88.76 ± 0.32 88.32 ± 0.76 89.66 ± 0.63 94.06 ± 0.41 90.41 ± 0.38 90.21 ± 0.27
0.1 85.87 ± 0.79 87.33 ± 0.51 87.04 ± 1.53 85.87 ± 0.54 92.75 ± 0.50 87.72 ± 0.46 87.99 ± 0.41
0.2 82.50 ± 0.96 82.08 ± 0.60 82.36 ± 0.78 83.20 ± 0.83 88.94 ± 0.70 84.80 ± 0.93 85.88 ± 0.83
0.3 79.11 ± 1.08 80.14 ± 0.99 78.55 ± 0.76 78.71 ± 1.97 81.34 ± 3.23 83.16 ± 1.18 84.61 ± 0.98
0.4 73.05 ± 0.20 72.24 ± 0.75 74.72 ± 0.57 72.13 ± 2.42 70.13 ± 3.59 81.06 ± 1.05 82.52 ± 1.01
0.5 57.46 ± 3.71 63.62 ± 0.39 66.83 ± 0.75 67.50 ± 3.99 58.31 ± 1.19 76.88 ± 2.97 81.50 ± 1.19
0.6 49.98 ± 0.15 63.07 ± 0.93 55.02 ± 1.41 64.58 ± 5.21 50.39 ± 0.47 68.50 ± 3.40 80.00 ± 0.72
0.7 49.83 ± 0.09 52.38 ± 0.66 54.18 ± 0.72 62.87 ± 6.82 49.76 ± 0.00 66.10 ± 2.45 77.01 ± 1.07
0.8 49.80 ± 0.03 51.42 ± 0.75 51.88 ± 0.25 52.44 ± 1.52 49.76 ± 0.00 65.93 ± 2.76 75.01 ± 0.88
0.9 49.77 ± 0.01 51.31 ± 0.20 51.69 ± 0.70 50.56 ± 1.32 49.76 ± 0.00 64.29 ± 1.46 67.96 ± 1.45

Table 4: Test accuracy on MR (mean ± std. dev.)

r CE MentorNet FW GCE LCCN DMI

0.0 72.35 ± 0.00 72.44 ± 0.32 72.35 ± 0.00 72.24 ± 0.10 72.35 ± 0.00 72.07 ± 0.00
0.1 70.51 ± 0.97 69.54 ± 0.19 70.49 ± 0.94 70.58 ± 1.03 70.72 ± 1.02 70.42 ± 0.73
0.2 67.12 ± 1.19 66.72 ± 0.98 67.14 ± 1.21 67.48 ± 1.02 67.33 ± 1.61 67.44 ± 1.22
0.3 64.68 ± 1.22 65.13 ± 0.13 64.92 ± 1.37 65.19 ± 1.09 64.65 ± 1.58 65.62 ± 1.04
0.4 54.52 ± 1.74 54.73 ± 1.01 57.89 ± 2.51 58.97 ± 1.77 54.52 ± 1.74 62.67 ± 2.27
0.5 53.08 ± 0.64 53.70 ± 0.55 53.83 ± 0.68 53.81 ± 2.04 53.08 ± 0.64 59.40 ± 0.63
0.6 52.52 ± 0.57 53.15 ± 0.97 53.58 ± 0.35 53.08 ± 1.46 52.54 ± 0.59 57.38 ± 0.81
0.7 52.28 ± 0.12 52.76 ± 0.98 52.38 ± 0.19 52.22 ± 0.10 52.29 ± 0.13 56.44 ± 0.78
0.8 52.26 ± 0.08 52.29 ± 0.25 52.24 ± 0.08 52.31 ± 0.15 52.25 ± 0.08 54.69 ± 0.65
0.9 52.20 ± 0.00 52.20 ± 0.56 52.16 ± 0.14 52.20 ± 0.07 52.20 ± 0.00 52.88 ± 0.33

Table 5: Test accuracy (mean) on Clothing1M

Method CE MentorNet VAT FW GCE LCCN DMI
Accuracy 68.94 69.30 69.57 70.83 69.09 71.63 72.46
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